因特网体系结构模型的各层使用地址,因特网体系结构

热点时事2023-11-18 21:44:19糖果寶寶o○

计算机网络(一)计算机网络体系结构

因特网体系结构模型的各层使用地址,因特网体系结构

计算机网络︰是一个将分散的、具有独立功能的计算机系统,通过通信设备与线路连接起来,由功能完善的软件实现资源共享和信息传递的系统。计算机网络是互连的、自治的计算机。

因特网体系结构(因特网体系结构分为几层)


网络把许多计算机连接在一起,而互联网则把许多网络连接在一起因特网是世界上的互联网。

网络拓扑结构是指由网中结点(路由器、主机等)与通信线路(网线)之间的几何关系(如总线形、环形)表示的网络结构,主要指通信子网的拓扑结构。按网络的拓扑结构,主要分为总线形、星形、环形和网状网络等,星形、总线形和环形网络多用于局域网,网状网络多用于广域网。

吞吐量表示在单位时间内通过某个网络(或信道、接口)的数据量。单位b/s,kb/s,Mb/s等。吞吐量受网络的带宽或网络的额定速率的限制。

网络中的速率是指连接在计算机网络上的主机在数字信道上传送数据位数的速率。单位是b/s, kb/s,Mb/s,Gb/s,Tb/s

指数据(报文/分组/比特流〉从网络(或链路)的一端传送到另一端所需的时间。也叫延迟或迟延。单位是s。时延的组成可以分为以下几种

因此,数据在网络中经历的总时延就是以上四部分时延之和

时延带宽积又称为以比特为单位的链路长度。即“某段链路现在有多少比特”。指发送端发送的第一个比特即将到达终点时,发送端已经发出了多少个比特。

往返时延(RTT)指从发送方发送数据开始,到发送方收到接收方的确认(接收方收到数据后立即发送确认),总共经历的时延。RTT越大,在收到确认之前,可以发送的数据越多,包括往返传播时延(=传播时延2)和末端处理时间(一般忽略不计)

信道利用率指出某一信道有百分之多少的时间是有数据通过的

网路利用率即信道利用率的加权平均值

分层的基本原则:

计算机网络的概念:

在计算机网络体系结构的各个层次中,每个报文分为两个部分:一是数据部分,即SDU;二是控制信息部分,即PCI,它们共同组成PDU

标准化组织(ISO)提出的网络体系结构模型,称为开放系统互连参考模型(OSI RM),通常简称为OSI参考模型。OSI参考模型有7层,自下而上依次为物理层、数据链路层、网络层、传输层、会话层、表示层、应用层。低三层统称为通信子网,它是为了联网而附加的通信设备,完成数据的传输功能;高三层统称为资源子网,它相当于计算机系统,完成数据的处理等功能。传输层承上启下。OSI参考模型的层次结构如图所示。

ARPA在研究ARPAnet时提出了TCP/IP模型,模型从低到高依次为网络接口层(对应OSI参考模型中的物理层和数据链路层)、网际层、传输层和应用层(对应OSI参考模型中的会话层、表示层和应用层)。TCP/P由于得到广泛应用而成为事实上的标准。

TCP/IP模型与OSI参考模型有许多相似之处。

两个模型除具有这些基本的相似之处外,也有很多别。

学习计算机网络时,我们往往采取折中的办法,即综合OSI参考模型和TCP/P模型的优点,采用一种如图所示的只有5层协议的体系结构,即我们所熟知的物理层、数据链路层、网络层、传输层和应用层。

因特网应用软件架构主要有哪两种组织架构模型?

网络体系结构是固定的。

指通信系统的整体设计,它为网络硬件、软件、协议、存取控制和拓扑提供标准。

它广泛采用的是标准化组织,并为应用程序提供了特定的服务,分层思想比如应用层,传输层等。应用程序体系结构由应用程序研发者设计,规定了如何在各种端系统上组织该应用程序。在选择应用程序体系结构时,有两种主流体系结构,serverclient结构或p2p体系结构。

网络体系结构为什么要采用分层次的结构

因特网从小到大发展起来,从物理层到应用层,需要大量软件、硬件和协议协调配合才能实现高效的运转。面对这么一个又大又复杂的网络,可以将它划分为小的相对独立的功能模块,也就是分层的方式进行研究,可以降低网络分析和研究的难度。同时,可以集中精力研究特定的部分或层次模块,各层之间采用接口方式,每一层的改进不影响其他层次的运行,网络体系结构分层是一个非常高效的研究方法。

简述具有五层协议的网络体系结构中各层的主要功能。

物理层:物理层的任务就是透明地传送比特流。物理层还要确定连接电缆插头的定义及连接法。

数据链路层:数据链路层的任务是在两个相邻结点间的线路上无错地传送以帧为单位的数据。每一帧包括数据和必要的控制信息。

网络层:网络层的任务就是要选择合适的路由,使发送站的运输层所传下来的分组能够正确无误地按照地址找到目的站,并交付给目的站的运输层。

运输层:运输层的任务是向上一层地进行通信的两个进程之间提供一个可靠的端到端服务,使它们看不见运输层以下的数据通信的细节。

应用层:应用层直接为用户的应用进程提供服务。

扩展资料:

因特网的网络层通过一系列路由器在源和目的地之间发送分组。为了将分组从一个节点(主机或路由器)移动到路径上的下一个节点,网络层必须依靠链路层的服务。

特别是在每个节点,网络层将数据报下传给链路层,链路层沿着路径将数据报传递给下一个节点。在该下个节点,链路层将数据报上传给网络层。

参考资料来源:

因特网体系结构包含几个层次?每层实现什么功能?

(1物理层,2数据链路层,3网络层,4传输层,5会话层,6表示层,7应用层)OSI是Open System Interconnect的缩写,意为开放式系统互联。标准组织(标准化组织)制定了OSI模型。这个模型把网络通信的工作分为7层,分别是物理层,数据链路层,网络层,传输层,会话层,表示层和应用层。1至4层被认为是低层,这些层与数据移动密切相关。5至7层是高层,包含应用程序级的数据。每一层负责一项具体的工作,然后把数据传送到下一层。 第一层是物理层(也即OSI模型中的第一层)在课堂上经常是被忽略的。它看起来似乎很简单。但是,这一层的某些方面有时需要特别留意。物理层实际上就是布线、光纤、网卡和其它用来把两台网络通信设备连接在一起的东西。甚至一个信鸽也可以被认为是一个1层设备。网络故障的排除经常涉及到1层问题。我们不能忘记用五类线在整个一层楼进行连接的传奇故事。由于办公室的椅子经常从电缆线上压过,导致网络连接出现断断续续的情况。遗憾的是,这种故障是很常见的,而且排除这种故障需要耗费很长时间。 第2层是数据链路层 运行以太网等协议。请记住,我们要使这个问题简单一些。第2层中重要的是你应该理解网桥是什么。交换机可以看成网桥,人们现在都这样称呼它。网桥都在2层工作,仅关注以太网上的MAC地址。如果你在谈论有关MAC地址、交换机或者网卡和驱动程序,你就是在第2层的范畴。集线器属于第1层的领域,因为它们只是电子设备,没有2层的知识。第2层的相关问题在本网络讲座中有自己的一部分,因此现在先不详细讨论这个问题的细节。现在只需要知道第2层把数据帧转换成二进制位供1层处理就可以了。 第3层是网络层 在计算机网络中进行通信的两个计算机之间可能会经过很多个数据链路,也可能还要经过很多通信子网。网络层的任务就是选择合适的网间路由和交换结点, 确保数据及时传送。网络层将数据链路层提供的帧组成数据包,包中封装有网络层包头,其中含有逻辑地址信息- -源站点和目的站点地址的网络地址。 如果你在谈论一个IP地址,那么你是在处理第3层的问题,这是“数据包”问题,而不是第2层的“帧”。IP是第3层问题的一部分,此外还有一些路由协议和地址解析协议(ARP)。有关路由的一切事情都在第3层处理。地址解析和路由是3层的重要目的。 第4层是处理信息的传输层。第4层的数据单元也称作数据包(packets)。但是,当你谈论TCP等具体的协议时又有特殊的叫法,TCP的数据单元称为段(segments)而UDP协议的数据单元称为“数据报(datagrams)”。这个层负责获取全部信息,因此,它必须跟踪数据单元碎片、乱序到达的数据包和其它在传输过程中可能发生的危险。理解第4层的另一种方法是,第4层提供端对端的通信管理。像TCP等一些协议非常善于保证通信的可靠性。有些协议并不在乎一些数据包是否丢失,UDP协议就是一个主要例子。 第5层是会话层 这一层也可以称为会晤层或对话层,在会话层及以上的高层次中,数据传送的单位不再另外命名,统称为报文。会话层不参与具体的传输,它提供包括访问验证和会话管理在内的建立和维护应用之间通信的机制。如服务器验证用户登录便是由会话层完成的。 第6层是表示层 这一层主要解决拥护信息的语法表示问题。它将欲交换的数据从适合于某一用户的抽象语法,转换为适合于OSI系统内部使用的传送语法。即提供格式化的表示和转换数据服务。数据的压缩和解压缩, 加密和解密等工作都由表示层负责。 第7层是“一切”。第7层也称作“应用层”,是专门用于应用程序的。应用层确定进程之间通信的性质以满足用户需要以及提供网络与用户应用软件之间的接口服务如果你的程序需要一种具体格式的数据,你可以发明一些你希望能够把数据发送到目的地的格式,并且创建一个第7层协议。SMTP、DNS和FTP都是7层协议。 学习OSI模型中重要的事情是它实际代表什么意思。 假如你是一个网络上的操作系统。在1层和2层工作的网卡将通知你什么时候有数据到达。驱动程序处理2层帧的出口,通过它你可以得到一个发亮和闪光的3层数据包(希望是如此)。作为操作系统,你将调用一些常用的应用程序处理3层数据。如果这个数据是从下面发上来的,你知道那是发给你的数据包,或者那是一个广播数据包(除非你同时也是一个路由器,不过,暂时不用担心这个问题)。如果你决定保留这个数据包,你将打开它,并且取出4层数据包。如果它是TCP协议,这个TCP子系统将被调用并打开这个数据包,然后把这个7层数据发送给在目标端口等待的应用程序。这个过程就结束了。 当要对网络上的其它计算机做出回应的时候,每一件事情都以相反的顺序发生。7层应用程序将把数据发送给TCP协议的执行者。然后,TCP协议在这些数据中加入额外的文件头。在这个方向上,数据每前进一步体积都要大一些。TCP协议在IP协议中加入一个合法的TCP字段。然后,IP协议把这个数据包交给以太网。以太网再把这个数据作为一个以太网帧发送给驱动程序。然后,这个数据通过了这个网络。这条线路中的路由器将部分地分解这个数据包以获得3层文件头,以便确定这个数据包应该发送到哪里。如果这个数据包的目的地是本地以太网子网,这个操作系统将代替路由器为计算机进行地址解析,并且把数据直接发送给主机。

Internet的基本结构与主要服务是什么

一、主要服务:

Usenet网络组服务:Usenet是一个由众多趣味相投的用户共同组织起来的各种专题讨论组的,通常也将之称为全球性的电子公告板系统,Usenet用于发布公告、、评论及各种文章供网上用户使用和讨论。

文件传输服务:FTP文件传输服务允许Internet上的用户将一台计算机上的文件传输到另一台上,几乎所有类型的文件,包括文本文件、二进制可执行文件、声音文件、图像文件、数据压缩文件等,都可以用FTP传送。

二、基本结构:

internet的网络结构:internet具有分级的网络结构:一般可分三层,下面一层为校园网和企业网,中间层是地区网络,上面一层是全国骨干网。

IP地址:IP地址采用二进制来表示,每个地址长32比特,在读写IP地址时,32位分为4个字节,每个

由于网络的规模有较大别,有的主机多,有的主机少,所以根据网络规模的大小将IP地址分为A,B,C三大类,除了上述三大类IP地址外,还有D,E两类特殊IP地址。

网络体系结构具有特指性

计算机网络体系结构相当复杂,且具有一定的程序性和系统性,可以认为它是一个独立系统,具有一定的系统性、复杂性以及其他独特的特征,而计算机网络体系结构的一个重要特征就是过程性。任何过程都不是轻而易举的就能够做到过程性,特别是计算机网络体系结构这种具一定系统性、复杂性与抽象性的系统,需要花费大量的时间、金钱与精力。

因此,应该对计算机网络体系有一个正确的认识与理解,准确抓住机算机网络体系结构建设的核心,并遵循一定的科学原理,有效完善计算机网络体系结构,提高计算机网络体系结构的运行效率。

以上内容参考:

相关推荐